SYNTHESIS OF 15,17-METHYLENE-PROSTAGLANDINS

Haruki NIWA and Masayasu KURONO*

Research Institute, Ono Pharmaceutical Co. Ltd.,

1-1, Sakurai 3-Chome, Shimamoto-cho, Mishima-gun, Osaka 618

20-Methyl-15,17-methylene-prostaglandin F2 α and E2 methyl ester ($\underline{1}$ and $\underline{2}$) and 15,17-methylene-17-phenoxy- ω -trinor-prostaglandin F2 α methyl ester ($\underline{3}$) were synthesized via pyrolysis of β -hydroxy sulfoxides obtained by the coupling reaction of 3,7-dioxy-6-phenylsulfinylmethyl-2-oxabicyclo-[3,3,0]-octane derivative ($\underline{10}$) with 3-butylcyclobutanone and 3-phenoxycyclobutanone respectively.

An important pathway for <u>in vivo</u> deactivation of prostaglandins (PGs) involves enzymatic oxidation at the C-15 hydroxyl group (prostanoid numbering) to 15-oxo-PGs¹. It was anticipated that PG analogs which cannot be transformed to the corresponding 15-oxo-PGs might afford more sustained biological activities. In the previous paper, we reported the synthesis of 15,19-methylene- ω -tetranor-PGs which showed less biological activities than those of natural PGs.² In this communication we would like to describe the synthesis of 15,17-methylene-PGs <u>1</u>, <u>2</u> and <u>3</u> which were expected to be new biological PG mimics with high potency.

(-)-Lactone alcohol $\frac{4}{3}$ was converted into the sulfoxide $\underline{10}$ by the sequential reactions as follows: (1) Tosylation of $\underline{4}$ with TsCl in pyridine at 25°C for 17 h to afford $\underline{5}^4$ (mp 91-92°C, $[\alpha]_D^{20}$ -51.3°(\underline{c} 1.35, CHCl₃)), (2) substitution reaction of $\underline{5}$ with sodium iodide in reflux acetone to afford $\underline{6}^4$ ($[\alpha]_D^{23}$ -24.2°(\underline{c} 5.90, CHCl₃)), (3) reduction of $\underline{6}$ with diisobutylaluminum hydride in toluene at -70°C for 30 min to afford $\underline{7}^4$ ($[\alpha]_D^{20}$ -35.3°(\underline{c} 0.95, CHCl₃), mp 114-116°C), (4) treatment of $\underline{7}$ with CH₃OH and p-TsOH at 25°C for 30 min to afford $\underline{8}^{4,5}$ ($[\alpha]_D^{20}$ -50.7°(\underline{c} 2.90, CHCl₃)), (5) treatment of $\underline{8}$ with dihydropyran and p-TsOH in CH₂Cl₂ at 25°C for 30 min to afford $\underline{9}^4$ ($[\alpha]_D^{20}$ -40.7°(\underline{c} 5.60, CHCl₃)), (6) treatment of $\underline{9}$ with phenylsulfinylmethyllithium in THF at 20°C for 3 h to afford $\underline{10}^4$ ($[\alpha]_D^{20}$ -43.5°(\underline{c} 4.30, CHCl₃), overall 76 % yield from 4).

The sulfoxide $\underline{10}$ was converted into the corresponding lithium salt upon treatment with 1.2 equiv of LDA in THF at -70° C for 30 min and allowed to react with 3-butylcyclobutanone⁶ at -78° C for 10 min to give the desired adduct $\underline{11}^{4,7,8}$ in 83 % yield. Adduct $\underline{12}^{4,7,8}$ was also obtained in 85 % yield upon treatment with 3-phenoxycyclobutanone⁹ under the essentially same procedure. Pyrolysis¹⁰ of $\underline{11}$ and $\underline{12}$

OH

OH

OH

OR

OR

$$CO_2CH_3$$
 CO_2CH_3
 CO_2CH_3
 CO_2CH_3
 CO_2CH_3
 CO_2CH_3
 CO_2CH_3

$$0R^{2}$$
 $Z R^{1} = R^{2} = H$, $X = I$
 $R^{1} = CH_{3}$, $R^{2} = H$, $X = I$
 $R^{1} = CH_{3}$, $R^{2} = THP$, $X = I$
 $R^{1} = CH_{3}$, $R^{2} = THP$, $X = CH_{2}SOC_{6}H_{5}$

$$O \rightarrow OCH_3$$
 $O \rightarrow OCH_3$
 $O \rightarrow$

$$R^{1} = CH_{3}, R^{2} = THP$$
 $R^{1} = CH_{3}, R^{2} = H$
 $R^{1} = R^{2} = H$

16
$$R^1 = CH_3$$
, $R^2 = THP$, $R^3 = H$
17 $R^1 = CH_3$, $R^2 = H$, $R^3 = H$
18 $R^1 = R^2 = R^3 = H$
19 $R^1 = CH_3$, $R^2 = Ac$, $R^3 = H$
20 $R^1 = CH_3$, $R^2 = Ac$, $R^3 = CH_2SCH_3$
21 $R^1 = R^2 = H$, $R^3 = CH_2SCH_3$

was carried out in benzene containing 5 equiv of pyridine at 78° C for 48 h to give the desired allylic alcohols 13^4 (76 % yield) and 16^4 (80 % yield) respectively.

Removal of THP group of $\underline{13}$ and $\underline{16}$ upon treatment with CH₃OH and p-TsOH at 25°C for 30 min afforded quantitatively the desired diols $\underline{14}^{4,5,11}$ and $\underline{17}^{4,5,11}$ respectively. The Wittig reaction of hemiacetal $\underline{15}$, derived from $\underline{14}$ by hydrolysis 12 , was accomplished upon treatment with excess 4-carboxybutylidenetriphenylphosphorane in DMSO at 50°C for 19 h followed by esterification with excess diazomethane to give 20-methyl-15,17-methylene-PG $F_2\alpha$ methyl ester $\underline{1}^{4,13}$ ([α] $_0^{28.5}$ +28.0°(\underline{c} 1.80, CHCl $_3$), m/e calcd for $C_{23}H_{38}O_5$ (M[†]) 394.2719; observed 394.2744) in 63 % yield.

On the other hand, 15,17-methylene-17-phenoxy- ω -trinor-PG $F_{2}\alpha$ methyl ester $\underline{3}$ was obtained by a series of the sequential reactions as follows. Acetylation of $\underline{17}$ with acetic anhydride and pyridine at 0°C for 4 h gave the desired monoacetate $\underline{19}^4$ in 70 % yield. Protection¹⁴ of the tertiary hydroxyl group of $\underline{19}$ with a methylthiomethyl group¹⁵ was accomplished upon treatment with acetic anhydride and DMSO at 40°C for 17 h to give the desired compound $\underline{20}^4$ in 80 % yield. Deacetylation followed by hydrolysis of $\underline{20}$ gave the corresponding hemiacetal $\underline{21}$. The Wittig reaction of $\underline{21}$ was accomplished upon treatment with excess 4-carboxybutylidenetriphenylphosphorane in DMSO at 25°C for 17 h followed by esterification with excess diazomethane to give the desired ester $\underline{22}^4$, $\underline{13}$ (20 % yield). Removal of the methylthiomethyl group of $\underline{22}$ was carried out upon treatment with 4 equiv of chloramine-T in aqueous THF at 25°C for 10 min to give 15,17-methylene-17-phenoxy- ω -trinor-PG $F_{2}\alpha$ methyl ester $\underline{3}^4$, $\underline{13}$ ([α] $_{D}^{25}$ +21.8°(\underline{c} 0.85, CHCl $_{3}$), m/e calcd for $C_{2c}H_{32}O_{5}$ (M⁺ - $H_{2}O$) 412.2250; observed 412.2252) in 50 % yield.

According to the essentially same procedure reported by E. W. Yankee et al 16 , 20-methyl-15,17-methylene-PG $F_{2}\alpha$ methyl ester $\underline{1}$ was converted into the corresponding PG E_{2} methyl ester $\underline{2}^{4,13}$ (overall 36 % yield, $[\alpha]_{D}^{28.5}$ -64.7° (\underline{c} 2.25, CHCl $_{3}$), m/e calcd for $C_{23}H_{36}O_{5}$ (M $^{+}$) 392.2563; observed 392.2515) as follows: (a) selective silylation of C-11 hydroxyl group with N-trimethylsilyldiethylamine in dry acctone at -45°C for 6 h (b) oxidation of C-9 hydroxyl group with Collins reagent in dry $CH_{2}Cl_{2}$ at 25°C for 5 min (c) desilylation with AcOH- $H_{2}O$ -CH $_{3}O$ H at 25°C for 1 h.

These new PG analogs $\underline{1}$, $\underline{2}$ and $\underline{3}$ showed more potent biological activities than those of natural PGs: e.g. 15,17-methylene-17-phenoxy- ω -trinor-PG F_{2}^{α} methyl ester $\underline{3}$ is 5 times more potent than natural F_{2}^{α} in an antinidatory effect in pregnant rats.

REFERENCES AND NOTES

- 1. (a) E. Anggärd and B. Samuelsson, Ark. Kem., 25, 293 (1966).
 - (b) J. Nakano, E. Anggard, and B. Samuelsson, European J. Biochem., 11, 386 (1969).
- 2. H. Niwa and M. Kurono, Chem. Lett., 1977, 1211.
- 3. E. J. Corey, T. K. Schaaf, W. Huber, U. Koelliker, and N. M. Weinshenker, J. Amer. Chem. Soc., <u>92</u>, 397 (1970).
- 4. Satisfactory infrared, proton magnetic resonance and mass spectral data were obtained for each compound.
- 5. The product was an epimeric mixture (2:1) due to the configuration of the methoxyl group.
- Prepared from diethyl butylmalonate (R. Adams and R. M. Kamm, Org. Syn., Coll. Vol. <u>1</u>, 250 (1954)) using the sequential reactions as follows: 1) LiAlH₄ in Ether, 2) HBr-H₂SO₄, 3) CH₃SOCH₂SCH₃-BuLi, 4) HgO-aqueous H₂SO₄.
- 7. The product should be a mixture of diastereoisomers due to four chiral centers including a sulfur atom and THP group.
- 8. The <u>cis</u> relationship between the hydroxyl and the substituent group on the cyclobutane ring was tentatively assigned, because it is reasonable that the bulky carbanion derived from <u>10</u> attacks the carbonyl group of the cyclobutanone from less hindered side. This prediction was apparently supported by the formation of only single product, 1 and 3 respectively, in the last step.
- Prepared from 2-phenoxy-propane-1,3-diol (S. W. Chaikin, J. Amer. Chem. Soc., 70, 3522 (1948))
 using the sequential reactions as follows: 1) TsC1-Py, 2) LiBr in acetone, 3) CH₃SOCH₂SCH₃-BuLi,
 4) CuCl₂·2H₂O in DME.¹⁷
- 10. B. M. Trost, T. N. Saltzmann, and K. Hiroi, J. Amer. Chem. Soc., 98, 4887 (1976).
- 11. The trans geometry of the newly formed double bond was confirmed by the characteristic infrared absorption and the NMR spectrum of olefinic protons: 14; IR(film) 970 cm⁻¹, NMR(CDC1₃) 5.35-5.95 ppm (ABX, J=15 and 7 Hz). 17; IR(film) 975 cm⁻¹, NMR(CDC1₃) 5.4-5.9 ppm (ABX, J=15 and 7 Hz).
- 12. E. J. Corey and R. Noyori, Tetrahedron Lett., 1970, 311.
- 13. The product was homogeneous in several solvent systems on silica gel plate.
- 14. The Wittig reaction of <u>18</u> derived from <u>17</u> gave not desired product <u>3</u> but a complex mixture containing phenol. The result prompted us to protect the C-15 hydroxyl group with an appropriate protecting group in order to prevent from the decomposition of the cyclobutane ring.
- 15. K. Yamada, K. Kato, H. Nagase, and Y. Hirata, Tetrahedron Lett., 1976, 65.
- 16. E. W. Yankee, C. H. Lin, and J. Fried, J. Chem. Soc., Chem. Commun., 1972, 1120.
- 17. K. Ogura, M. Yamashita, M. Suzuki, and G. Tsuchihashi, Tetrahedron Lett., 1974, 3653.

(Received October 13, 1978)